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Abstract— Objective: Non-contact sensing of seismocar-
diogram (SCG) signals through a microwave Doppler radar
is promising for biomedical applications. However, the de-
lineation of fiducial points for radar SCG still relies on con-
current ECG which requires a contact sensor and limits the
complete non-contact detection of SCG. Methods: Instead
of ECG, a new reference signal, the radar displacement
signal of heartbeat (RDH), was derived through the complex
Fourier transform and the band pass filtering of the radar
signal. The RDH signal was used to locate each cardiac
cycle and mask the systolic profile, which was further used
to detect an important fiducial point, aortic valve opening
(AO). The beat-to-beat interval was estimated from AO-AO
interval and compared with the gold standard, ECG R-to-
R interval. Results: For the 22 subjects in the study, the
evaluation of the AOs detected by RDH (AORDH) shows
the average detection ratio can reach 90%, indicating a
high ratio of the AORDH that are exactly the same as AO
detected using the ECG R-wave (AOECG). Additionally, the
left ventricular ejection time (LVET) values estimated from
the ensemble averaged radar waveform through AORDH
segmentation are within 2 ms of those through AOECG
segmentation, for all the detected subjects. Further analy-
sis demonstrates that the beat-to-beat intervals calculated
from AORDH have an average root-mean-square-deviation
(RMSD) of 53.73 ms when compared with ECG R-to-R inter-
vals, and have an average RMSD of 23.47 ms after removing
the beats in which AO cannot be identified. Conclusions:
Radar signal RDH can be used as a reference signal to
delineate fiducial points for non-contact radar SCG signals.
Significance: This study can be applied to develop com-
plete non-contact sensing of SCG and monitoring of vital
signs, where contact-based SCG is not feasible.

Index Terms— Fiducial Point, seismocardiogram (SCG),
aortic valve open, non-contact, microwave, Doppler radar.

I. INTRODUCTION

CARDIAC time intervals, such as systolic time intervals
(STIs) within each cardiac cycle, are important timing

features for evaluating cardiovascular health [1]–[3]. The seis-
mocardiogram (SCG) signal, which could be measured non-
invasively, records micro-scale precordial vibrations from heart
movement and blood flow [4]. It can be used to derive STIs
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through detection of key fiducial points. These points, such as
aortic valve opening (AO) and aortic valve closing (AC), can
be accurately delineated from high quality SCG signals. The
measured STIs can then be used to evaluate cardiac health
and performance, such as exercise capacity, coronary artery
disease and left ventricular muscle dysfunction [5], [6].

The conventional SCG signal is generally acquired by
attaching an accelerometer to the mid-sternum [7]; while
this measurement approach is non-invasive, it still requires a
sensor to be attached to the skin, which may not be possible
for burn patients or infants [8]–[10]. Recently, Xia et al.
[11] investigated a non-contact approach based on microwave
Doppler radar for SCG measurement, and demonstrated that
the radar acceleration waveform (RAW, the second derivative
of radar displacement signal) has a high similarity to the dorso-
ventral SCG (SCGDV) in both morphology and the locations
of fiducial points AO and AC. Since the manual analysis used
in [11] relies on the contact electrocardiogram (ECG) signal,
an automatic and standalone method for delineating fiducial
points from RAW, the radar SCG signal, is needed for real-
time and remote monitoring of STIs.

As RAW shows high similarity to SCGDV, we first explored
the traditional delineation methods for SCG to delineate fidu-
cial points from RAW. The conventional methods rely on the
ECG R-wave to segment the cardiac cycles and identify the
fiducial points [7], [11]. For example, the AO can be detected
by searching the minimum or maximum absolute magnitude
of SCG in the first 200 ms starting from the ECG R-wave
[12]. The time durations between R-wave and AO, and AO
and AC can represent the pre-ejection period (PEP) and left
ventricular ejection time (LVET) respectively [13], [14], which
are important STIs reflecting left ventricular function and
having significance in heart failure monitoring [15], ischemic
myocardial disease [16] and hemorrhage management [17].
However, this delineation approach requires additional ECG
sensors attached to the skin surface, which is not suitable for
a complete non-contact radar system.

Tadi et al. [18] developed an algorithm to detect the
AO from SCG without the concurrent ECG. The algorithm
combines the SCG signals in three axes to obtain the Hilbert
transformed acceleration and generate the principal velocity
signal. Using the local maximum of the principal velocity
signal, the systolic peak or SCG AO point on the original SCG
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signal can be located for each cardiac cycle. After removing
the motion artifacts, the inter-beat intervals were calculated
from the SCG AO points. They show high correlation and
an average root mean square deviation (RMSD) of 37.6 ms
when compared with ECG R-to-R intervals. This demonstrates
a promising application of SCG in estimating the inter-beat
intervals. However, the delineation algorithm of AO is sus-
ceptible to noise and requires three-axis SCG, which cannot
be used for delineating the RAW signals that represent only
the SCGDV signals.

Khosrow-Khavar et al. [19] proposed an automatic delin-
eation algorithm applicable to SCGDV signals. Instead of using
ECG, the delineation algorithm is based on an envelope signal
of SCGDV, the heart rate envelope (HRE), that can indicate the
systolic profile of the corresponding SCGDV. The delineation
algorithm could identify the AO with a mean detection ratio
of 32% per individual recording [19]. However, the derivation
of HRE depends on the cut-off frequency, integration width
and percentage of causality index, and may require adjustment
for different subjects or the same subject under different
conditions. Additionally, the fiducial points are unrecognizable
when the signal quality of SCGDV is limited.

Variational mode decomposition (VMD) approach [20] was
proposed to construct the heart rate envelope, but it is for
the standalone heartbeat extraction only. The moving average
approach [21] and single-layer bi-directional long short-term
memory (LSTM) network [22] were developed to recognize
the systolic profile without concurrent ECG, which can be
further applied for AO detection. However, the moving average
threshold has requirements on the signal quality and the LSTM
network fails to detect the systolic profiles of lower magnitude
or quality, and the overall detection ratios are limited.

As discussed above, the signal quality plays an important
role in the standalone delineation of fiducial points. However,
compared with conventional SCG signals detected by a contact
sensor, the signal quality of RAW is affected by the noise
and interference in the radar transmission path. This limits
the annotation performance, and in particular, the noise and
interference make it difficult to accurately determine a search
window for fiducial points using the methods developed for
conventional SCG signals.

In this paper, we propose an approach based on a radar
displacement signal of heartbeat (RDH) for automatic detec-
tion of AO from RAW without concurrent ECG. The RDH
signals were derived from the complex Fourier transform of
the radar displacement signals that were further band-pass
filtered. The derived RDH signal was used as a reference
signal to automatically and accurately narrow down search
windows for standalone AO annotation, and the AOs were then
detected within the search windows (AORDH). Another method
using radar acceleration envelopes (RAE) was also applied to
detect AOs (AORAE), based on the work of Khosrow-khavar
et al. [19], and the detection ratio of AORDH was compared
with that of the AORAE. Additionally, the AO and AC points
were extracted from ensemble averaged waveform of the RAW
signal to estimate the LVET. Finally, the inter-beat intervals
calculated from the RAW AO-AO intervals were compared
with the ECG R-to-R intervals to illustrate the efficacy of

Fig. 1: Radar system setup for detecting the cardiac signals.

obtaining heart rate variability without concurrent ECG.

II. METHODOLOGY

A. Data Acquisition

The microwave Doppler radar system had the same setup as
that described in [11], consisting of a microwave signal gen-
erator (Agilent N5222A), horn antennas (A-INFOLB-20180-
SF), an I/Q frequency downconverter (Hittite HMC951LP4E)
and a data acquisition unit (DAQ, Analog Devices AD7770).
It worked at 5.8 GHz with a transmitting power of 6 dBm,
and antennas were 50 cm away from the mid-sternum of a
human subject as shown in Fig. 1. The I/Q radar signals
were recorded from the radar system through the AD7770. The
ECG was recorded using a BN-RSPEC and a MP150WSW
DAQ (BioPAC Systems, Inc., Goleta, CA, USA) as a reference
signal for heartbeat segmentation and fiducial point detection.
The AD7770 and MP150WSW DAQs were synchronized to
sample the radar and ECG signals simultaneously with the
same sampling rate of 1000 samples/second.

A total of 22 individuals volunteered to participate in the
experimental measurement, including 10 female adults (Age:
32.40±10.81 years, Height: 163.88±2.80 cm, and Weight:
55.75±4.61 kg) and 12 male adults (Age: 34.17±10.60 years,
Height: 177.38±5.01 cm, and Weight: 77.61±7.09 kg). Be-
fore the experiments, all the participants were informed of
the experimental procedures, and signed the consent forms
(approved by the Georgia Tech Institutional Review Board).
Each of the volunteers was asked to sit on the chair for 120
seconds for acquiring the cardiac signals in the rest state with
normal breathing. Additionally, the subjects were asked to stay
still to reduce motion artifacts during the measurements, such
as gestures, swallow activity and other body movements.

B. Signal Processing and Reference Signal for RAW

1) Pre-processing and Linear Filtering: The radar displace-
ment signals were obtained from the recorded I/Q radar
signals through the arctangent approach [23]. Then the RAW
signal was obtained by taking the second derivative of radar
displacement signal, which is an acceleration signal similar to
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Fig. 2: Interference in the RAW signal, with interference
marked with red dots.

SCGDV [11]. The first and last 10 seconds were disregarded
to remove the possible interferences at the beginning and end
of the recording process. Thus, RAW signals of 100 seconds
were analyzed for each subject.

Severe interferences due to motion artifacts such as uninten-
tional body movement and coughs can distort the RAW signal
and make it impossible to extract effective cardiac information.
Typically, these interferences could result in a much higher
power level than the normal cardiac signals [2]. A sliding
window of length 500 ms and a threshold twice the median
value of the power envelope were used to mark the interfered
signals [2], as shown in Fig. 2. These marked interfered signals
were discarded before further analysis.

After removing the segments corrupted with obvious motion
artifacts, the ECG and RAW signals were filtered with finite
impulse response (FIR) filters (Kaiser window) to remove
noises with pass bands of 3-45 Hz and 18-35 Hz, respectively.
The pass band of 18-35 Hz was selected for filtering RAW
signal based on the previous work by Xia et al. [11]. It was
demonstrated that the RAW signal in the pass band of 18-35
Hz has a good similarity to SCGDV in morphology and timing
features.

2) Generation of Reference Signal: A reference signal was
derived to delineate the RAW signals. This reference signal
was named as radar displacement signal of heartbeat (RDH),
which is the displacement signal corresponding to the heart-
beat that is much smaller than and is superimposed on the
respiration signal as shown in Fig. 3 (a). To extract the RDH
signal, a complex Fourier transform (CFT) was first applied
to the recorded radar displacement signals to eliminate the
harmonics and signal distortion in the spectrum [24]. As shown
in Fig. 3 (b), the spectrum can clearly show the heartbeat
component at 1.285 Hz without the surrounding interferences.
By searching for the highest peak within the frequency band
0.8 Hz-2.5 Hz where the heartbeat frequency generally locates
[25], the heartbeat frequency (fhb) could be identified. Then,
a FIR filter with 0.2-Hz pass band centering on the heartbeat
frequency [fhb − 0.1, fhb + 0.1] was applied to the radar
displacement signals to extract the RDH signal. This indicates
the maximum allowable change of heart rate for the duration
of the radar signal that uses a single RDH reference signal is
6 beats per minute. For general applications, wherein the heart

Fig. 3: Radar displacement signal in (a) the time domain, and
(b) the frequency domain.

rate may vary more than 6 beats per minute over time, the radar
recording may be segmented into multiple sections so that the
variation of heart rate is within 6 beats per minute within each
section. Then a RDH signal could be extracted from each of
the multiple sections using the proposed approach.

C. Window Selection for Masking Systolic Profile and
Searching Fiducial Point AO

For determining the AO location in SCG, the ECG R-wave
is typically used as the reference, and the peak of SCG with
the minimum or maximum absolute magnitude within a 200-
ms fixed window is considered as the AO point [12], [26].
This method was applied to RAW, the radar SCG signal, to
obtain the accurate AO locations for evaluating the proposed
method in this paper, which was denoted as AOECG.

In the proposed method that uses the RDH signal as a
reference signal, two windows were determined to mask the
systolic profile and search the AO point, respectively. The
RAW of 16 subjects were analyzed to obtain the two windows.
Based on our observation, the peaks of RDH (PRDH) might
be at either side of the ECG R-wave. The locations of PRDH
relative to the ECG R-wave should be evaluated to correctly
build a 300-ms time window for locating the systolic profile.
The relative locations of PRDH with respect to the ECG R-
wave were analyzed for all heartbeats of each subject. For
the heartbeats with PRDH before ECG R-wave, the 300-
ms window starting from or before PRDH could mask the
systolic profile. For heartbeats with PRDH after ECG R-
wave, the window should be adjusted, and the analysis of the
interval between them could determine the 95% confidence
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interval and a number offset1, which determines a 300-ms time
window [PRDH-offset1, PRDH-offset1+300] that can mask the
major portion of the systolic profile in general cases. After
masking the systolic profile in RAW, the envelope of the profile
(ENVRDH) was derived through a third order integration of the
masked RAW, and the peak of ENVRDH (PENVRDH) should
be very close to the AO point [27]. The PENVRDH was found
around the location of the corresponding AOECG which is
considered as the true location of AO. The relative location of
PENVRDH with respect to AOECG was evaluated to determine
a general search window for AO. Similar with the determi-
nation of 300-ms window, the intervals between PENVRDH
and AOECG for heartbeats with PENVRDH after AOECG were
analyzed to obtain the 95% confidence interval, which could
determine an offset2. A 200-ms time window [PENVRDH-
offset2, PENVRDH-offset2+200] can be built to search for the
AORDH. The peak of RAW with the minimum or maximum
absolute magnitude in this 200-ms fixed window is considered
as the AO, denoted as AORDH. The process for identifying
AORDH is shown in Algorithm 1. The locating, integrating and
searching processes contribute to a computational complexity
of O(n) for the algorithm, where n represents the length of
the radar signal.

Algorithm 1 Identify the fiducial point AORDH

1: Locate the peaks of RDH (PRDH)
2: Use PRDH to build 300-ms windows, [PRDH-offset1,

PRDH-offset1+300]
3: Within the 300-ms window, mask the systolic profile
4: Integrate the masked profile to get its envelope ENVRDH

5: Locate the peaks of ENVRDH (PENVRDH)
6: Use PENVRDH to build 200-ms windows, [PENVRDH-

offset2, PENVRDH-offset2+200]
7: Within the 200-ms window, search for the minimum or

maximum absolute and obtain AORDH

As mentioned before, another method using RAE was
applied to detect AO from radar signal based on the work
for contact SCG waveform proposed by Khosrow-khavar et al.
[19]. In this approach, the peaks of RAE (PRAE) are at least 50
ms before the ECG R-wave, and therefore a fixed window of
300 ms with respect to PRAE [PRAE, PRAE+300] was chosen
to mask the systolic profile. Then the envelope of systolic
profile (ENVRAE) and its peak (PENVRAE) were derived so that
the AO point can be determined as the peak with maximum or
minimum absolute magnitude within a search window WSYS
proposed in [19]. The AO location determined using this
method was denoted as AORAE.

D. Ensemble Averaged Waveform and LVET
Compared with AO, the automatic delineation of AC is more

challenging due to the variations in amplitude and timing of
the AC peaks in each heart beat cycle for the conventional
SCG [4]. The signal quality of RAW including the amplitude
and timing features is affected more by interference and noise
when compared with SCG acquired from the contact sensor
approach. Thus, the AC points were manually extracted from

RAW, which is the first encountered maximum for the diastolic
profile [28]. The AC point represents the start of diastole when
the pressure inside the ventricle has dropped causing the aortic
valve to close abruptly.

For each subject, the 100-second RAW signal was first
segmented into heartbeats using four reference points: ECG R-
wave, AOECG, AORAE and AORDH separately. The performance
of adopting these different reference points were compared
afterwards in Section III-D. All the heartbeats were averaged
with ensemble averaging techniques to reduce uncorrelated
noise [29]. Then, four ensemble averaged RAW heartbeats
were obtained for each subject.

After averaging, the AC point on each ensemble averaged
waveform was manually marked. For each subject, the ACR,
ACECG, ACRAE and ACRDH were obtained, and they repre-
sent the ACs identified in the ensemble averaged waveforms
segmented by ECG R-wave, AOECG, AORAE and AORDH, re-
spectively. LVET was then determined by calculating the AO-
AC interval. The LVETs derived from the ensemble averaged
waveforms obtained by using ECG R-wave, AOECG, AORAE
and AORDH as reference points were denoted as LVETR,
LVETECG, LVETRAE and LVETRDH, respectively.

E. Interbeat Interval from AO
Tadi et al. has shown that AO-AO interval of SCG can be

used to obtain beat to beat interval (BBI) with a high accuracy
when compared with corresponding ECG R-to-R interval [18].
Apart from estimating STIs, studies were also conducted to
explore the efficacy of using the AO points delineated from
the RAW signal to estimate BBI. The BBIs calculated using
the AOECG, AORAE and AORDH were denoted as BBIECG,
BBIRAE and BBIRDH, respectively. Those BBI values were also
compared with the gold standard BBI that is the ECE R-to-R
interval and was denoted as BBIR.

III. EXPERIMENTAL EVALUATION

A. The Performance of the Reference Signal RDH
A visual comparison of RAE and RDH with corresponding

ECG and RAW signals is given in Fig. 4. The RDH signal
was compared with the ECG and RAE signals to evaluate
its performance. Fig. 4 (a) shows an example of good-quality
RAW signal whereas Fig. 4 (b) gives an example of poor-
quality RAW signal. In both cases, the RAE and RDH signals
show the same number of cardiac cycles as that of ECG, and
each cycle has a major peak that could potentially be used
as a reference point similar to the ECG R-wave. The RDH
signal has peak locations different from the RAE signal, and
contains less tiny fluctuations.

It is obvious that the cardiac cycles cannot be accurately
determined from only a RAE signal derived from the relatively
low-quality radar signal, as shown in Fig. 4 (b). The time
interval between adjacent peaks is affected due to the noise
and the interferences, and the effectiveness of RAE is severely
degraded. This was also demonstrated in [19]. For example, in
Fig. 4 (b), the fifth peak in RAE is less than 400 ms from its
previous peak and should be disregarded, and thus this cardiac
cycle could not be identified by RAE. In contrast to the RAE
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(a) A high-quality RAW (b) A low-quality RAW

Fig. 4: ECG, RAE and RDH for the RAW with red stars representing ECG R-peaks, red diamonds indicating the peaks of
RAE, and red circles showing the peaks of RDH.

signal, the RDH signal in Fig. 4 (b) is showing to be less
affected by the noise and can still indicate the cardiac cycles
correctly. Since the center frequency of the band pass filter,
described in Section II-B.2, is an estimation of the averaged
heartbeat, the band pass filtering step reduces the influence of
sudden interference.

To further evaluate the performance of RDH and RAE
in representing the cardiac cycle quantitatively, the number
of detected cardiac cycles using the ECG, RAE and RDH
signals was compared for each of the 22 subjects. ECG is the
gold standard for identifying cardiac cycles in healthy people
without arrhythmias, and number of cardiac cycles in ECG
is denoted as N . The ratio between the number of detected
cardiac cycles in RAE and N , rRAE, and the ratio between that
in RDH and N , rRDH, are shown in Fig. 5.

As shown in Fig. 5, the RDH signal provides a high
average detection ratio of cardiac cycles, 0.995. Among the
22 subjects, it detects the same number of cardiac cycles as
that from ECG for 16 subjects, and the detection ratio is over
0.96 for the other 6 subjects. In comparison, the RAE signal
achieves an average detection ratio of 0.883, lower than that of
RDH, and provides the same number of cardiac cycles as that
from ECG for only 2 subjects. Thus, the RDH signal could
represent the number of cardiac cycles accurately, and would
be promising to locate the systolic profile and the fiducial
point.

Fig. 5: The detection ratios of cardiac cycles of RAE and
RDH. Here, F and M stand for female and male subjects,
respectively. For example, F1 represents the female subject 1.

B. The Determination of the Time Window
For the heartbeats with PRDH before the ECG R-wave, the

time window [PRDH-offset1, PRDH-offset1+300] could mask
the systolic profile. However, it should be adjusted to guarantee
the masking of systolic profile for the heartbeats with PRDH
after the ECG R-wave. The intervals between PRDH and ECG
R-wave for 16 subjects were analyzed to determine the offset1
value, and the other 6 subjects were used to evaluate the
performance of offset1 in the fiducial point annotation. Fig.
6 summarizes the time interval for heartbeats in which PRDH
is on the right of corresponding ECG R-wave.
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Fig. 6: The time interval between PRDH and ECG R-wave
for heartbeats with PRDH after ECG R-wave.

Fig. 7: The time interval between PENVRDH and AOECG for
heartbeats with PENVRDH after AOECG.

Based on the statistical analysis of confidence interval
[30], [31], the 95% confidence interval for each subject was
calculated. Using the upper confidence limit marked in red
dot for each subject, the 95% confidence interval for the 16
subjects could determine the offset1 to be 88.35 ms, and a 300-
ms time window [PRDH-88.35, PRDH+211.65] was selected
for masking the systolic profile. For the heartbeats with PRDH
after the ECG R-wave, Fig. 6 shows that 14 out of 16 subjects
have mean values within 88.35 ms, and thus the window could
mask the systolic profile in general cases.

After determining the time window for masking the systolic
profile, PENVRDH was obtained from the envelope of the
masked systolic profile. The intervals between PENVRDH
and AOECG were evaluated to determine the time window
[PENVRDH-offset2, PENVRDH-offset2+200]. Similar with the
determination of 300-ms window, Fig. 7 shows the analysis
of time interval between PENVRDH and AOECG points for the
heartbeats with PENVRDH on the right of AOECG points.

As shown in Fig. 7, the 95% confidence interval for each
of 16 subjects was calculated, and the upper confidence limit
marked in red dot determined the 95% confidence interval
for 16 subjects. Then the offset2 was determined to be
34.89 ms, and a 200-ms time window of [PENVRDH-34.89,
PENVRDH+165.11] was selected to search for AORDH.

Fig. 8: The detection ratios of AORAE and AORDH.

C. Evaluation of the Fiducial Point AO

The detection ratios of AORAE and AORDH for each subject
were assessed to demonstrate the detection accuracy. Here,
the detection ratio indicates the percentage of number of
AORAE or AORDH that are at the same locations as that of
the corresponding AOECG. The results for the 16 subjects are
presented in Fig. 8, and those of the last 6 subjects in Fig.8
are also demonstrated to exhibit the detection performance.

For the first 16 subjects, the detection ratios of AORDH are
all over 75%, in which 11 of them are over 90%. The results
of AORAE exhibit that for only 2 subjects the detection ratios
are over 75%, for 5 subjects the rations are between 50% and
75%, and for 9 subjects the detection ratios are between 25%
and 50%.

For the other 6 subjects, the AORDH has detection ratios over
90% for 4 subjects and the ratios are between 50% and 75%
for 2 subjects. For AORAE, the detection ratios are between
50% and 75% for 3 subjects, the ratios are between 25% and
50% for 2 subjects, and for the subject F10 the detection ratio
is below 25%.

Based on the results in Fig. 8, AORDH achieves an overall
average detection ratio of 90%. For the case of AORAE, the
average detection ratio is 47%. The results demonstrate that
AORDH could achieve a good representation of AOECG, and
improve the average detection ratio by 43% when compared
with AORAE.

The superior performance of AORDH compared with AORAE
is due to the high quality of the RDH signal that leads to a
higher detection ratio of cardiac cycles and better determined
windows, as demonstrated in Sections III-A and III-B. This in
turn helps to obtain more accurate systolic profiles using RDH,
which is further demonstrated visually in Fig. 9. In Fig. 9 (a),
a high-quality RAW signal is presented with the corresponding
AOECG, AORAE and AORDH marked. In addition, the ECG R-
wave location, ENVRAE and ENVRDH were also marked and
displayed. Here, a high-quality RAW signal indicates that it
has a cross correlation coefficient over 0.9 with the concurrent
dorso-ventral SCG detected by an accelerometer. The figure
shows that each ECG R-wave locates before the corresponding
AO, while the peaks of ENVRAE and ENVRDH are very close
to the corresponding AO point. The AO localization methods
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(a) A high-quality RAW

(b) A low-quality RAW

Fig. 9: Detection of fiducial point AO from radar signals using
ECG, RAE and RDH.

based on the peaks of ENVRAE and ENVRDH, as discussed
in Section II-C, can accurately locate AORAE and AORDH,
respectively, which are at the same locations as that of AOECG.
However, when the signal quality of RAW decreases, as shown
in Fig. 9 (b), the RAE approach fails to detect some AO
points while the RDH approach could still reliably identify
all AO points, which demonstrates the robustness of the RDH
approach to the noise.

D. Evaluation of the Ensemble Averaged Waveform and
LVET

The ensemble averaged waveform for one subject is shown
in Fig. 10. Fig. 10 (a) is the ensemble average of the beats
segmented using the ECG R-wave. The fiducial points AOR
and ACR are clearly observed, and the ensemble average
exhibits high signal quality. The waveforms in Figs. 10 (b), (c)
and (d) correspond to the ensemble average of beats segmented
using AOECG, AORAE and AORDH, respectively.

The morphology of Fig. 10 (b) is very similar to that of
Fig. 10 (a), except that the starting point is AOECG instead of
ECG R-wave. After removing the part before AOR of Fig. 10
(a) and the corresponding number of points at the end of Fig.
10 (b), the averaged waveforms in Figs. 10 (a) and (b) have a
cross correlation coefficient of 0.97. The high similarity of the
averaged waveforms indicates that the beat segmentation with

Fig. 10: The averaged RAW waveform starting from (a) ECG
R-wave, (b) AOECG, (c) AORAE and (d) AORDH.

Fig. 11: The errors of the LVETs derived from the ensemble
averaged RAW with LVETR as the reference.

AO could also be effectively used for obtaining the ensemble
averaged waveform.

The averaged waveform in Fig. 10 (d) has a cross correlation
coefficient of 0.99 to that in Fig. 10 (b), which is higher than
the coefficient of 0.95 between the waveforms in Figs. 10
(b) and (c). Thus, compared with Fig. 10 (c), the averaged
waveform in Fig. 10 (d) has higher similarity to Fig. 10 (b) in
morphology, especially the diastolic profile. This is because
the AORDH has a higher detection ratio, and thus reduces
the number of beats that are not starting from the correct
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Fig. 12: Beat-to-beat intervals calculated from AO for one subject.

AO locations. The beats starting from inaccurate AO points
degrade the morphology of the ensemble averaged waveform,
as observed in Fig. 10 (b) at around 200 ms.

To evaluate the performance of using different reference
signals for estimating LVETs, LVETs for each subject were
calculated from AOs and ACs marked on the corresponding
ensemble averaged waveforms. For the LVETs obtained us-
ing three reference points (AOECG, AORAE and AORDH), the
comparisons with LVETR are given in Fig. 11.

For subjects F03, F10 and M07, ACs could not be identified
from the ensemble averaged RAW waveforms due to the
limited quality of RAW, and thus the corresponding LVETs
are not available. For the other 19 subjects, the LVETR are
detected. Compared with the LVETR, the LVETECG is within
2 ms of LVETR for 14 subjects and the errors are between
2 ms and 5 ms for 2 subjects. For the other 3 subjects,
ACs are undetectable on the quality-limited ensemble averaged
waveform starting from AOECG, and thus LVETECG are not
available. This indicates that the beat segmentation with AO
can be used to estimate LVET with limited errors.

The LVETRDH has almost the same results as that of the
LVETECG. For each detected LVETECG, the corresponding
LVETRDH is within 2 ms. The LVETRAE could also achieve
good performances, but F04 and F07 have deviations over 2 ms
and the method does not provide a LVETRAE value for M04.
These results demonstrate that LVETRDH could perform as
well as LVETECG, and has better performance than LVETRAE.

E. Evaluation of Interbeat Interval from AO

BBIs calculated from AO-AO intervals are compared with
the gold standard BBIR for one subject with a 30-second plot
shown in Fig. 12. The variation of the BBIR and BBIECG with
time demonstrates the respiratory trends congruent with phys-
iological mechanisms of respiratory sinus arrhythmia [32].
The BBIRAE and BBIRDH also indicate the similar results and
follow the respiratory trends. In Fig. 12, the BBIRDH are the
same as the BBIR except the two points at the beginning of

Fig. 13: The RMSDs of BBIECG, BBIRAE and BBIRDH using
BBIR as reference.

the plot, while the BBIRAE has relatively large errors at 7
points. This is also exhibited in their RMSDs from the BBIR,
which are 6.55 ms and 64.52 ms for BBIRDH and BBIRAE,
respectively.

To further demonstrate the accuracy of BBIECG, BBIRAE and
BBIRDH, they are compared with the gold standard BBIR for
all the subjects. The corresponding RMSDs are calculated and
denoted as RMSDECG, RMSDRAE and RMSDRDH, respective-
ly, with the results shown in Fig. 13.

The BBIECG is first compared with the BBIR to demonstrate
the accuracy of BBIECG in representing the gold standard
BBIR. A large variation of the RMSDECG is observed for
different subjects in Fig. 13. The RMSDECG for 5 subjects
are within 20 ms, but are over 50 ms for 9 subjects. The
average RMSDECG for all the subjects is 42.0 ms, which is
about 5 ms larger than the results of SCG stated in [18]. The
relatively large deviation is due to the additional interference
in the RAW, which results in an inaccurate annotation of AO
and thus introduces difference between the AO-AO and the
R-R intervals.
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Fig. 14: The RMSDs of BBIECG, BBIRAE and BBIRDH after
removing large deviations, with BBIR as reference.

The averages of RMSDRAE and RMSDRDH are 69.68 ms
and 53.73 ms, respectively. Compared with RMSDRAE, the
RMSDRDH exhibits lower deviations for all the subjects,
including the 16 subjects for window selection and the other
6 subjects. This indicates that the deviations of BBIRDH from
BBIR are less than that of BBIRAE, and BBIRDH could achieve
a better representation of BBIR.

The deviation of BBIECG, BBIRAE and BBIRDH from BBIR
might be due to wrong annotation of AO for poor-quality
RAW, especially when the RAW signal was interfered by
small interference that makes it difficult to correctly locate
AO. After marking the BBIECG that has deviations over 20
ms from the corresponding BBIR, the locations of wrong
annotations can be found. To evaluate the performance of
BBIRDH with less interference, BBIECG, BBIRAE and BBIRDH
at these locations are removed, which leads to the improved
RMSDECG, RMSDRAE and RMSDRDH as shown in Fig. 14.

After removing the large deviations, RMSDECG are de-
creased to below 10 ms for all the subjects, and the average is
3.82 ms. Compared with the corresponding RMSDs in Fig. 13,
RMSDRAE and RMSDRDH in Fig. 14 are also decreased. The
averages of RMSDRAE and RMSDRDH are 43.92 ms and 23.47
ms, respectively, which implies a much better performance for
a high quality RAW signal.

IV. CONCLUSION

In this paper, an approach for detecting the AO from RAW
without the concurrent ECG is presented to enable fully non-
contact detection and analysis of SCG. The approach is based
on a RDH signal that is derived from the radar displacement
signal. The peaks of the RDH signal are used as reference
points to accurately locate the systolic profiles of RAW with
a fixed time window. Then the peaks of the envelope of
the located systolic profiles are used as reference points for
searching the AORDH. The results show that the AORDH have
detection ratios over 75% for 20 out of 22 subjects, achieving
a high estimation of AO points. The LVETRDH obtained from
the ensemble averaged RAW is within 2 ms of the LVETECG.
Additional analysis of the BBI reveals that the RDH-based
approach could provide a non-contact detection of the BBI

with an average RMSD of 53.73 ms, and the RMSD could be
reduced to 23.47 ms after removing the large deviations or the
heartbeats with relatively high interferences.

Since the RDH-based approach can detect the AO with
reasonable accuracy, this paves the way towards the complete
non-contact measurement and analysis of SCG and enables
remote sensing of BBI using the radar system. However,
more robust method may need to be developed for searching
AO within the built search window, especially for signals
containing noise and interference. In addition, ACs from RAW
are manually delineated, which limits the automatic detection
of LVET in each heartbeat cycle, and the estimation of beat-to-
beat intervals from the RAW signal is limited when compared
with the ECG R-to-R interval. In future work, we will improve
the robustness of the detection, use concurrent conventional
SCG to evaluate the accuracy of information extracted from
RAW, and further investigate fiducial point detection under
external perturbation such as exercise, which will promote
the applications of the non-contact system in cardiovascular
monitoring applications, such as hemorrhage management,
cardiac computed tomographic gating [33], and monitoring
patients with heart failure [34].
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