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Abstract—Objective: To estimate instantaneous oxygen uptake
(VO2) with a small, low-cost wearable sensor during exercise
and daily activities in order to enable monitoring of energy
expenditure (EE) in uncontrolled settings. We aim to do so using
a combination of seismocardiogram (SCG), electrocardiogram
(ECG) and atmospheric pressure (AP) signals obtained from a
minimally obtrusive wearable device. Methods: In this study, sub-
jects performed a treadmill protocol in a controlled environment
and an outside walking protocol in an uncontrolled environment.
During testing, the COSMED K5 metabolic system collected
gold standard breath-by-breath (BxB) data and a custom-built
wearable patch placed on the mid-sternum collected SCG, ECG
and AP signals. We extracted features from these signals to
estimate the BxB VO2 data obtained from the COSMED system.
Results: In estimating instantaneous VO2, we achieved our best
results on the treadmill protocol using a combination of SCG
(frequency) and AP features (RMSE of 3.68±0.98 ml/kg/min
and R2 of 0.77). For the outside protocol, we achieved our
best results using a combination of SCG (frequency), ECG
and AP features (RMSE of 4.3±1.47 ml/kg/min and R2 of
0.64). In estimating VO2 consumed over one minute intervals
during the protocols, our median percentage error was 15.8%
for the treadmill protocol and 20.5% for the outside protocol.
Conclusion: SCG, ECG and AP signals from a small wearable
patch can enable accurate estimation of instantaneous VO2 in
both controlled and uncontrolled settings. SCG signals capturing
variation in cardio-mechanical processes, AP signals, and state
of the art machine learning models contribute significantly to the
accurate estimation of instantaneous VO2. Significance: Accurate
estimation of VO2 with a low cost, minimally obtrusive wearable
patch can enable the monitoring of VO2 and EE in everyday
settings and make the many applications of these measurements
more accessible to the general public.

Index Terms—Seismocardiography, COSMED K5, Oxygen
Uptake, Metabolic, Machine Learning

I. INTRODUCTION

Oxygen uptake (VO2) is an important physiological param-
eter for numerous reasons. VO2 max, an individual’s maxi-
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mum rate of oxygen uptake during incremental exercise, is
commonly used as a measurement of cardiorespiratory fitness
(CRF) for both clinical and non-clinical purposes. Athletes
frequently measure their VO2 max to assess their endurance.
Medical professionals measure CRF with cardiopulmonary
exercise testing (CPET) to quantify disease progression in
patients with conditions such as heart failure (HF) and chronic
obstructive pulmonary disease [1]–[4]. Submaximal VO2 mea-
surement also has many applications. It can be used along with
a subject’s weight to calculate energy expenditure, a critical
ingredient in the calculation of energy balance, which quanti-
fies the relationship between an individual’s caloric intake and
expenditure. Energy balance is important for the management
of many illnesses such as diabetes, obesity, cardiovascular
disease, and cancer, as well as for maintaining a generally
healthy lifestyle [5], [6].

Measuring VO2 is largely limited to clinical environments
due to extensive equipment requirements and the need for
professionally trained technicians. The ability to test more
ubiquitously could enable many desirable applications such as
more consistent fitness tracking, closer monitoring of disease
progression, and more precise weight-loss management. To
this aim, companies such as COSMED, VO2 Master, and
VacuMed have developed portable calorimetry systems ca-
pable of providing accurate VO2 measurements in outdoor
environments [7], [8]. However, these systems are both pro-
hibitively expensive for use by the general public and still
involve highly obtrusive components (e.g. masks etc), making
them unsuitable for ubiquitous monitoring. For this reason,
there have been many attempts to achieve similar readings
from minimally obtrusive wearable devices [9]. Commercially
available examples include FitBit, Apple Watch, and Samsung
Gear S2. However, studies have repeatedly shown that while
these devices produce accurate heart rate (HR) measurements
in laboratory settings, their EE measurements do not meet
acceptable standards [10]–[14]. These studies warn against
using any of these commercial systems for weight or disease
management programs.

Many research efforts have thus sought to obtain superior
portable VO2 estimation from minimally obtrusive wearable
devices. As far back as 1981 [15], studies have demonstrated
the ability to obtain reasonable estimations of EE with various
methods involving accelerometry [15]–[17] and, more recently,
gyroscopes [17]. However, accelerometry-based approaches
often err when motion does not involve the body part where the
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sensor is placed, causing accuracy to vary significantly accord-
ing to activity and/or placement location [9], [18]. As a result,
other recent efforts have demonstrated improved results com-
bining accelerometry with HR and electrocardiogram (ECG)
sensors to incorporate cardiac information [19]. Another study
showed the potential of utilizing an additional physiological
measurement–ventilation–to produce accurate estimations of
VO2 [20].

While most studies were conducted only in laboratory set-
tings with protocols involving treadmill-based exercise and/or
standardized activities, several studies of note showed results
in free-living conditions. Participants in a study by Lester et al.
conducted a field protocol involving stairs, inclines, elevators,
object lifting, and sweeping, both indoors and outdoors [21].
While this study, which incorporates grade using barometric
pressure and GPS, achieved considerable accuracy, the use
of regression formulas developed by the American College of
Sports Medicine (ACSM) necessitates the restrictive and error-
prone sub-task of five-class activity recognition. Additionally,
in two separate studies, Bouarfa et al. [22] and Brage et al.
[23] achieved low error in estimating EE over 14 days of free-
living [24]. Bouarfa et al. [22] used a single ear-worn sensor
and Brage et al. [23] used the combined HR and accelerometry
Actiheart system, both comparing their results against ground
truth from doubly-labeled water. However, neither study could
assess instantaneous results as their target value for each
subject was a single energy expenditure reading totaled over
the full trial period.

Our study introduces the combination of state-of-the-art ma-
chine learning algorithms with seismocardiogram (SCG)–the
measure of thoracic vibrations produced by cardio-ventricular
contraction and blood ejection into the vascular tree [25]–for
estimating instantaneous VO2 in indoor and outdoor settings.
Recent studies [26]–[28] involving patients with HF have
shown that VO2 max and the clinical status of a patient with
HF can be estimated from the electrocardiogram (ECG) and
SCG signals using a small wearable patch. All of these studies
were conducted with HF patients in controlled clinical settings
by trained professionals. In this study, rather than obtaining the
singular VO2 max parameter in clinical settings for disease
monitoring purposes, we seek to estimate instantaneous sub-
maximal VO2 in healthy individuals in both controlled and
uncontrolled environments with advanced machine learning
algorithms.

We fitted subjects with two simultaneously recording data
collection systems in this study. We placed a small wearable
patch that collects ECG, SCG, and atmospheric pressure
(AP) measurements on a subject’s mid-sternum. This patch
is an improvement upon our previous version [29]. A triaxial
accelerometer contained within the patch measures SCG.
We measure gold standard VO2 using the COSMED K5
wearable metabolic system. While previous studies measuring
EE and VO2 with single wearable sensors have also used
accelerometry-based methods, the accelerometer is commonly
placed in distal locations such as the waist [19], [21], [30]
or ear [22]. In our case, we place an accelerometer on the
chest to capture SCG signals that specifically relate to cardio-
mechanical activity in ways that remotely placed accelerom-

eters are not able to. As a result, we avoid the problem
of having to determine placement location and potentially
reduce variability across activities. We compare the efficacy
of different environmental, ECG, and SCG-based feature sets
generated from the wearable patch in combination with models
of varying levels of complexity to explore how these different
types of signals relate to oxygen uptake during physical
activity, ultimately arriving at a global regression model.

II. METHODS

A. Experimental Protocol
We conducted this study under a protocol (H18452) ap-

proved by the Georgia Institute of Technology Institutional
Review Board. A total of 17 healthy subjects (9 females
and 8 males) participated in the study (Age: 26.8 ± 4.1
years, Weight: 67.5 ± 14.1 kg and Height: 170.5 ± 9.9
cm). All subjects provided written informed consent before
experimentation and reported no cardiopulmonary issues.

Fig. 1(a) shows the placement of both sensors: our custom-
built wearable patch and the COSMED K5 (COSMED, Rome,
Italy) metabolic system. Fig. 1(b) shows the custom-built
wearable sensor hardware, which measures ECG, triaxial SCG,
and environmental features (atmospheric pressure, temperature
and humidity). For each subject, we placed the wearable sensor
evenly between the suprasternal notch and xiphoid process on
the mid-sternal line, using three ECG electrodes (model 2670,
3M, Saint Paul, MN, USA). For the COSMED K5 system, we
fitted subjects with a gas exchange mask on their face and the
K5 system on their back. We situated a heart rate belt from the
K5 system just below the chest line. After fitting subjects with
all the sensors and systems, we asked them for confirmation
of their comfort before testing. At the start of each trial, we
synchronized both the wearable sensor and K5 system to a
smart mobile phone in order to record timestamps throughout
the protocol.

Fig. 1(d) shows the outline of the study protocol, which
we divided into two parts: a treadmill walking portion in
a laboratory setting and an outdoor walking portion in an
uncontrolled setting. For the treadmill part of the protocol,
subjects first stood still for two minutes to record baseline data.
Then, subjects walked on a treadmill at five different speed
settings (0.75, 1, 1.25, 1.5 and 1.75 meters/second, roughly
1.7, 2.2, 2.8, 3.4 and 4 miles/hour) for six minutes at each
speed, totaling 30 minutes of walking. After completing the
treadmill walk, subjects stood still for 5 minutes to record
a recovery period. Including this recovery period, subjects
performed the treadmill protocol continuously for a total of
37 minutes.

After the treadmill part, subjects rested for 15 minutes
before starting the outside walking protocol. They began this
section standing still for 2 minutes at the “Start/Stop” location
of the route marked in Fig. 1(c). Then, subjects walked the
route shown in Fig. 1(c), arriving back at the same ”Start/Stop”
point. The route contains a mixture of level ground, uphill
and downhill walkways (with significant slopes), two uphill
stairs climbing and four traffic signals along the way. The
terrain is marked in Fig. 1(c). Subjects completed this walk at
their own chosen speed and followed normal pedestrian traffic
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Fig. 1. (a) A subject configured with both the wearable patch and the COSMED K5 system, with inset showing a zoomed-in image of the ECG electrodes.
(b) The wearable patch top, bottom, and inside. The microSD (1), microUSB (2), and battery (3) are shown. (c) A map of the outdoor walking route across
Georgia Institute of Technology with marked terrain. (d) An outline of the study protocol.

laws. After completing the route, subjects stood still for 3
minutes to record a recovery period. This part of the protocol
took approximately 20-30 minutes depending on each subject’s
speed as well as traffic conditions during their testing. Of 17
subjects, two females were not able to perform the outside
walk due to precipitation. For that reason, we obtained data
from 17 treadmill protocols and 15 outdoor protocols.
B. Sensing Hardware

We recorded gold standard breath-by-breath (BxB)
metabolic data with the COSMED K5 system (COSMED,
Rome, Italy). Subjects wore the COSMED heart rate probe
(i.e. belt) which provided a HR reading corresponding to the
ground-truth metabolic data.

We collected ECG and triaxial SCG (axes: head-to-foot
(HtoF), dorso-ventral (DV), and lateral (Lat)), with a novel
wearable patch as shown in Fig. 1(b). This patch is an
improvement upon our previous version as described in [29].
It contains an ATSAM4LS microcontroller (Atmel Corpo-
ration, San Jose, CA), whereas the previous version used
an ATmega1284P microcontroller (Microchip Technology,
Chandler, AZ). The ECG sensor uses an analog-front-end-
integrated circuit with an on-board analog-to-digital converter
ADS1291 (Texas Instruments, Dallas, TX). The accelerometer
in the present patch that acquires triaxial SCG signals is the
ADXL355 (Analog Devices, Norwood, MA), which has a low
noise floor of 25 µg/

√
Hz compared to the triaxial accelerom-

eter BMA280 (Bosch Sensortech GmbH, Reutlingen, Ger-
many) used in the previous version [29] with a noise floor of
120 µg/

√
Hz. The patch also contains a BME280 (Bosch Sen-

sortech GmbH, Reutlingen, Germany) environmental sensor
which records atmospheric pressure (AP), ambient temperature
and relative humidity, whereas the previous version [29] had
only pressure sensing capability using the MS5611-01BA03
(Measurement Specialties, Fremont, CA). The patch used in
this work has a diameter of 7 cm and weight of 38.2 gm. When
fully charged, it can record continuously for approximately
45 hours, which is more than sufficient for constant remote
monitoring. Initially it samples the ECG signal at 1kHz,
the accelerometer signals at 500 Hz and the environmental
signals at 20 Hz, and saves the data into a SD card in the
patch. A custom-built graphical user interface accesses all the
data into a computer and resamples the accelerometer and
environmental signals at 1 kHz to have the same sampling
frequency of 1 kHz for all the signals.
C. Signal Processing and Feature Extraction

1) Pre-processing and Linear Filtering

To assess VO2 estimation ability in controlled and uncon-
trolled settings independently, data from the treadmill and
outside protocols were processed and analyzed separately.
Later, the models trained on the data from one protocol were
validated on the data from the other protocol and vice versa,
to evaluate the generalizability of the models.

Fig. 2(a) illustrates the signal processing and feature ex-
traction procedures used for the wearable signals (ECG, SCG
and AP) and the BxB COSMED K5 data. We synchronized
all signals from the wearable patch with the BxB data from
the COSMED K5 system and took relevant timestamps with
a mobile phone to be used in subsequent analysis. We filtered
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Fig. 2. (a) Functional block diagram of signal processing and feature extraction procedure: Wearable ECG, SCG and AP signals were synchronized with
breath-by-breath (BxB) data from COSMED K5 system. Wearable ECG and SCG signals were filtered and sections corrupted with motion artifacts were
removed from the signals. The ECG signal was normalized and the R-peaks of the ECG signal were detected, and the SCG and AP signals were segmented
into heartbeats using corresponding R-peaks. SCG and AP heartbeats were averaged to get ensemble averaged heartbeats and features were extracted from
the averaged beats. The wearable features were fed into regressor as estimators. VO2 from the BxB data corresponding to each averaged heartbeats were
computed and fed into regressor as target variables. (b) Visual representation of ECG artifact removal (with legends showing different lines for the figure in
the middle). (c) Visual representation of heartbeat segmentation, ensemble averaging and feature extraction of SCGDV signal.

The raw ECG and SCG signals from the wearable patch with
finite impulse response (FIR) Kaiser window band-pass filters
(cut-off frequencies: 10-30 Hz for the ECG and 1-40 Hz for
the SCG signals). We chose these cut-off frequencies for the
ECG signal to reduce the T-wave interference and amplify the
R-wave for better R-peak detection in the subsequent signal
processing step [31], [32]. We used the cut-off frequencies
for the SCG signals to remove out-of-band noise without
distorting the shape of the SCG signals [33]. After the filtering
step, we computed a fourth SCG signal representing the
accelerometer magnitude (SCGMag) using the three SCG axes
already obtained (SCGHtoF, SCGLat, SCGDV) according to the
following formula:

SCGMag =
√
(SCGHtoF

2 + SCGLat
2 + SCGDV

2) (1)

As further processing depends on high quality ECG signals,
we used an automated artifact detection algorithm to iden-
tify motion artifacts in the ECG signal and excluded these
corrupted segments from further analysis, as shown in Fig.
2(b). We initially segmented all the wearable signals into 30
second windows. For each window, we detected the upper
(Eu) and lower (El) envelope of the data and computed a
difference Ed (= Eu – El). We then calculated the mean (µ)
and standard deviation (σ) of Ed throughout the 30 second
frame. We deemed an ECG signal segment to contain artifacts
when the Ed of that specific portion was greater or less
than 3σ from the µ [34]. We removed frames containing
artifact from all wearable signals using the timestamps for
the affected segments. The artifact removal technique removed
approximately 5% heartbeats in two subjects for the treadmill
protocol and 5% heartbeats in one subject for the outside
walking protocol. For other subjects, it removed less than 1%
of the heartbeats.

2) Moving Ensemble Averaging

After removing sections with artifacts, we amplitude nor-
malized the ECG (in the 30 second frame) and used the Pan
Tompkins method [35], [36] to detect the R-peaks of the ECG
signal. We segmented the wearable signals (ECG, four axes
of SCG, AP signal) into individual heartbeats using the R-
peaks of the ECG signal. We cropped each heartbeat to a
duration of 500 ms after the R-peak. For heartbeats where
the heart rate was greater than 120 beats per minute (and
thus a second heartbeat appeared in the 500 ms window), we
zero-padded the portion of the second heartbeat, to nullify the
effect of the second heartbeat in the feature extraction process
later. We chose the duration of 500 ms based on our previous
experience with SCG signals and generic feature extraction
processes [33], as most of the relevant systolic cardiac events
of interests (e.g., aortic valve opening and closing) occur
within this time frame from the corresponding R-peak of ECG.
We chose a constant time window to crop the ECG, SCG,
and AP signals to have a repeatable generic feature extraction
process (explained in later section).

For all signals in each heartbeat, we averaged ten consec-
utive heartbeats in order to reduce noise and motion artifacts
[37], obtaining ensemble averaged heartbeat frames across the
whole recording. With a step-size of one heartbeat, this process
resulted in a total of 64,349 ensemble averaged heartbeats from
17 subjects for the treadmill protocol and 37,485 ensemble
averaged heartbeats from 15 subjects for the outside walk
protocol. We calculated the R-to-R interval for each heartbeat
and averaged this value across 10 heartbeats in the same
way. We used R-to-R interval as a feature in subsequent
modeling steps. We also calculated a mean AP signal value
for each heartbeat and similarly averaged this value across 10
measurements. We used this value as an AP signal feature
for modeling. Fig 2(c) shows an overview of the ensemble
averaging technique for a single axis of SCG.
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3) Feature Extraction from the SCG signals

Using an automated algorithm, we extracted 28 time do-
main, 17 amplitude and 17 frequency domain features (62
total) from the ensemble-averaged waveforms for each of the
four SCG signals. The list of extracted features is provided in
Table I. We extracted the amplitude and time domain features
from the time-domain representation of the SCG signals, and
the frequency domain features from the power spectral density
(PSD) estimate of the SCG signals. Peaks and valleys in the
averaged frames were ranked according to their amplitudes,
and the highest and second highest amplitude were used. Lo-
cation was calculated as the distance from the corresponding
R-peak in ms. Width was calculated as the width of the peak or
valley at half-prominence, in ms. For prominent frequencies in
the PSD, peaks in the PSD of the frame were ranked according
to their amplitudes, and the highest, second highest and third
highest amplitude were used to locate the first, second and
third prominent frequency accordingly. We evaluated different
combinations of feature sets for performance in estimating
VO2, which is further explained in details in Section III.A.

4) Feature Extraction from the ECG Signal

We calculated the R-to-R interval and instantaneous heart
rate for each heartbeat and averaged them with the same en-
semble averaging method described in the “Moving Ensemble
Averaging” sub-section. We used both of these as ECG signal
features.

5) Feature Extraction from the AP signal

For each protocol, we selected AP signal values correspond-
ing to the first 50 averaged heartbeats for each subject as

TABLE I
SCG FEATURES EXTRACTED

Signals Feature Names Number of Features
Ampl. Time Freq.

SCG (0-200
ms)

Highest and second highest
peak (Ampl., Loc. and Width)

2 4

Lowest and second lowest val-
ley (Ampl., Loc. And Width)

2 4

Number of peaks and valleys 2
First and second peak (Ampl.,
Loc. And Width)

2 4

First and second valley
(Ampl., Loc. And Width)

2 4

Highest peak of absolute sig-
nal (Ampl., Loc. And Width)

1 2

SCG
(200-500
ms)

Highest peak (Ampl., Loc. and
Width)

1 2

Lowest valley (Ampl., Loc.
And Width)

1 2

Number of peaks and valleys 2
Highest peak of absolute sig-
nal (Ampl., Loc. And Width)

1 2

SCG AUS (0-100 ms), ..., (400-500 ms) 5
SCG PSD
Band Power

(0-3 Hz), (3-6 Hz), ..., (27-30
Hz) and (0-500 Hz)

11

SCG PSD First, second and third promi-
nent frequency (Ampl. and
Freq.)

6

Single Axis
Total

17 28 17

4-Axes Total 68 112 68

Ampl: amplitude, Freq: frequency, Loc: location, AUS: area under signal,
PSD: power spectral density.

baseline values for that subject. Averaging these, we obtained
a single baseline AP value (APBL) for each subject. For all
AP values for each subject, we obtained a delta pressure (δP)
measurement using the following formula:

δP i = AP i −APBL (2)
where, i=1:number of averaged heartbeats for a particular
subject. δP was the only feature from the AP signal used.
With 62 features from each SCG signal, two features from
ECG and one feature from AP, we had a total of 251 features
per ensemble averaged heartbeat.

6) Parameter Estimation from the BxB Data

First, we smoothed the time-synchronized BxB data with
a 5 point moving average window to reduce noise [38].
We computed averaged VO2 measurements corresponding to
each ensemble averaged waveform with the time-stamps taken
during recording. These VO2 values functioned as the target
variable in the regressor for each ensemble averaged heartbeat.
We used Matlab R© to conduct all signal processing and feature
extraction steps.
D. Machine Learning and Regression

1) Regression Model

In previous work, researchers used linear regression [39],
multiple linear regression [30] and non-linear regression [19]
models to estimate VO2 and/or EE. In our prior work with
pre-ejection period (PEP) estimation from SCG [33], we
have demonstrated that non-linear ensemble methods outper-
form linear regression models in developing global regression
models for PEP estimation from wearable SCG sensors. For
that reason, we have explored different linear and non-linear
ensemble regression models in our initial analysis to esti-
mate VO2 from wearable signals. From our initial analysis,
we chose ensemble regression models over linear regression
models.

Before training a regression model to estimate VO2, we
removed outlying heartbeats from the ensemble averaged SCG
waveforms. For each subject, we designated the first 50
averaged heartbeat frames from the signals measured at rest
as baseline heartbeat frames and averaged all the features
(for a particular feature set consisting of f features from
SCG, ECG and AP signals) of the 50 frames to create a
baseline feature distribution. We calculated the Mahalanobis
distance [40] between the baseline feature distribution and
each averaged heartbeat frame for a particular subject. Our
underlying hypothesis was that the wearable signals would
change morphologically with various intensities of exercise.
We expected greatest morphological changes compared to
baseline at peak exercise and expected the Mahalanobis
distance to capture this variation. We deemed a particular
heartbeat frame an outlier based on the interquartile range
criteria described in [34] and excluded these frames from the
dataset. One thing to note is that the previous outlier removal
step for the ECG signal using an envelope-based detection
technique was used to remove artifact-affected ECG segments,
which did not involve SCG artifacts in the decision-making
process, but rather focuses on the ECG alone. Nevertheless,
some of the SCG heartbeats could also be heavily affected
by motion artifacts and thus a second outlier removal step
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was required based on SCG characteristics. We used the
Mahalanobis distance calculated for each frame as a feature in
the regression model, which makes the total number of features
equal to f+1. This outlier heartbeat removal technique removed
approximately 5% heartbeats for the outside walking protocol
and 10% heartbeats for the treadmill protocol.

After removing outlier heartbeats, we trained different re-
gression models to estimate the target variables from the
features extracted in the Method section. From our ini-
tial analysis, Extreme Gradient Boosting (XGBoost) [41]
regression outperformed other regression methods. For that
reason, we chose XGBoost regression for detailed analysis
in this work. XGBoost is a decision-tree based ensemble
algorithm that uses a gradient boosting [42] framework. It
is an example of an ensemble method [43] that is com-
putationally efficient, parallelizable, able to handle missing
values, and able to be pruned/regularized to avoid over-
fitting. We fit an XGBoost regressor on the extracted fea-
tures for all ensemble averaged heartbeats to estimate cor-
responding target VO2 values. We then used this model to
estimate VO2 values for unseen heartbeat frames as repre-
sented by the same feature sets. We performed this process
with different combinations of feature sets extracted from
the SCG, ECG, and AP signals, optimizing hyper-parameters
with a grid search. The final hyper-parameters are as fol-
lows: learning rate=0.05, max depth=10, subsample=0.6, col-
sample bytree=0.7, n estimators=100, min child weight=2,
gamma=0.3. We used Python 3.6 for all machine learning
techniques.

2) Cross-validation and Model Evaluation

We used leave-one-subject-out (LOSO) cross-validation for
n subjects for both protocols. At each fold we trained an
XGBoost regressor on the data from n-1 subjects, leaving one
subject out. We then predicted VO2 for the left-out subject,
repeating this n-1 more times with a different subject excluded
each time. As a result, we obtained predictions for all ensemble
averaged heartbeats. We calculated a root mean squared error
(RMSE) between the estimated target variable (VO2,e) and
the ground truth target variable acquired from the BxB data
(VO2,a):

RMSE =

√√√√ 1

N

N∑
i=1

(V O2,e (i) − V O2,a (i))2 (3)

where N is the number of ensemble average heartbeats for a
particular subject. We calculated the cross-validated RMSE
as the average of the RMSE scores from n folds. In this
way, we trained two different global regression models for
two exercise protocols. We also calculated coefficients of
determination (R2) between the true values and the cross
validated predictions of VO2 across all subjects.

3) Regression for Different Feature Sets

Repeating this regression and cross-validation approach for
15 different combinations of feature sets (shown in Table
II), we compared the resulting cross-validated RMSE scores
to see which performed better in estimating VO2, using an
XGBoost regressor. We performed statistical analysis on the

cross-validation results from the different feature sets.
In literature, researchers have used HR to estimate

VO2 using simple correlation analysis and linear regression
with/without cross-validation [19], [44]–[46]. To compare
the performance of our proposed algorithm with HR-based
models, we trained a simple linear regression model with
LOSO cross-validation to estimate VO2 from HR only for
the two protocols separately and calculated the RMSE and
R2 (also reported in Table II). We later compared the results
obtained from this HR-based linear regression model with
our proposed algorithm (using XGBoost). Additionally, we
performed simple correlation analysis (without any cross-
validation) between instantaneous HR and VO2 for the two
protocols and calculated subject-wise R2 and global R2 (with
all data for a particular protocol) to compare our proposed
algorithm with a simple HR-based model.

4) Regression with Feature Selection

We performed different feature selection techniques to select
K (=25) features out of 251 (SCG, ECG, and AP) features for
the estimation of VO2, to explore how a subset of selected
features can perform compared to different feature sets de-
scribed in the section above. Based on our initial analysis, we
chose the feature selection technique using sequential forward
selection (SFS) [47] for detailed analysis. We performed the
SFS method on the whole dataset separately for the two
protocols and used those selected features to train an XGBoost
regression model per protocol. We calculated the RMSE and
R2 following the same LOSO cross-validation approach de-
scribed above and compared the results to the best-performing
feature set for the two protocols respectively.

5) Cross-Evaluation of Regression Models

For cross-evaluation of the two models generated from the
two protocols, we trained an XGBoost regressor on all the
data from the treadmill protocol and predicted VO2 for the
data from the outside protocol and vice versa. We calculated
subject-wise RMSE and overall R2 (as described before) to
compare the estimation accuracy and generalizability of the
two models. We used only the best-performing feature set from
the combination of SCG and ECG features to implement this
cross-evaluation.
E. Comparison with Similar Studies

We compared the performance of our proposed algorithm
to the performance of similar studies [10], [21]. Besides
RMSE and R2 for instantaneous VO2 estimation, we calcu-
lated percentage estimation error for VO2 consumed over one
minute intervals using the equation below, following the works
reported in [10], [21].

error =
|
∑
V O2,e −

∑
V O2,a|∑

V O2,a
× 100 (4)

For each subject, we calculated subject-wise mean of the
percentage errors and calculated the median percentage error
(MPE) following [10] for all subjects. We calculated the MPE
using the best performing feature sets for the two protocols.
F. Statistical Analysis

We performed statistical analysis on cross-validated RMSE
results of different feature sets. We used multiple comparison
tests on the RMSE results from the n cross validation folds. We
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employed the Friedman test to detect if statistical differences
existed between our results and the Wilcoxon signed rank test
for post-hoc testing. Additionally, for the post-hoc testing,
we applied the Benjamini-Hochberg correction for multiple
comparisons on the p-values. To explore the importance of
the single AP feature, we performed Wilcoxon signed rank
test on the subject-wise RMSE results with and without the AP
feature. Details on these statistical tests and the reasons behind
their use are discussed in [48]. In this work, we considered
p-values below 0.05 statistically significant.

III. RESULTS AND DISCUSSION

Fig. 3(a) shows the wearable signals (filtered ECG, filtered
SCGDV and raw AP signals) and the VO2 target variable
for both protocols for one subject. Fig 3(b) and (c) show
the averaged SCGDV waveform at different exercise intensity
levels for treadmill and outside walking exercise respectively.
SCGDV waveforms exhibit changes in amplitude with incre-
mental changes in exercise during treadmill walking as shown
in Fig. 3(a) (left) and (b). VO2 also exhibits incremental
changes during treadmill exercise as expected in Fig. 3(a).
AP signals seem somewhat stable in general during treadmill
exercise. In the case of outdoor walking in Fig. 3(a) (right), AP
signals track the altitude of the terrain well. As expected, VO2
changes with the gradation. In contrast, changes in SCGDV
waveforms shown in Fig. 3(a) (right) and (c) are not very
apparent.

Overall, Fig. 3 shows that the SCG signal amplitude changes
significantly with the intensity of exercise, which results from
physiological changes as well as motion artifacts. However,
we believe movement artifacts were not synchronized to the
heartbeat timings and the impacts of motion artifacts on
the SCG heartbeats (and extracted features from them) were
reduced accordingly using a moving ensemble average of
10 heartbeats. Future analysis should look into component
analysis of the signals to isolate the relevant cardiac and
motion information from the signals. As the SCG signal
varies among subjects, we refrained from putting any emphasis
on the signal shape and peaks to correlate with underlying
cardiac events [33]. Rather we wanted to explore how generic
time, frequency and amplitude features extracted from SCG at
various exercise/movement intensities can be used to develop
a global regression model to estimate instantaneous VO2 in
both controlled and uncontrolled settings. This reduces the
complexity of the signal processing by avoiding the inter-
subject variability and enables repeatable feature extraction
and estimation of VO2 in a population-level model.

Upon inspection of Fig. 3, it is apparent that the addition
of cardio-mechanical (i.e. SCG) and environmental signals
(i.e. AP) to HR-based models has the potential to improve
estimations of instantaneous VO2 during both controlled and
uncontrolled activity. The details of estimation results are
given in the following sections.
A. Comparison of Different Feature Sets of SCG with ECG

Table II shows the RMSE in ml/kg/min and R2 values
for different combinations of feature sets extracted from the
wearable signals. Statistically significant differences existed
in these results according to the Friedman test (p<0.05). We

TABLE II
RMSE (ml/kg/min) AND R2 FOR VO2 ESTIMATION FROM DIFFERENT

FEATURE SETS OF SCG (AMPLITUDE, Ampl, FREQUENCY, Freq AND TIME,
Time ) AND ECG USING XGBOOST, AND HR USING LINEAR REGRESSION

MODEL

Treadmill Protocol Outside Walking Protocol
Feature Set RMSE R2 RMSE R2

Ampl 4.06±1.06 0.76 4.8±1.53 0.52

Freq 3.68±0.98 0.77 4.85±1.31 0.57

Time 5.42±1.39 0.45 5.13±1.18 0.45

ECG 7.48±1.83 0.17 5.81±1.07 0.4

Ampl+ECG 4.24±1.18 0.72 4.46±1.56 0.58

Freq+ECG 3.99±1.28 0.71 4.30±1.47 0.64
Time+ECG 5.07±1.79 0.5 4.89±1.66 0.47

Ampl+Freq 3.78±0.98 0.78 4.79±1.53 0.54

Ampl+Time 4.04±1.27 0.68 4.93±1.62 0.47

Freq+Time 3.9±1.33 0.67 4.92±1.41 0.48

Ampl+Freq+ECG 3.98±1.27 0.75 4.52±1.52 0.59

Ampl+Time+ECG 4.27±1.54 0.64 4.81±1.67 0.48

Freq+Time+ECG 4.27±1.61 0.61 4.69±1.65 0.51

Ampl+Freq+Time 3.87±1.18 0.73 4.95±1.57 0.47

Ampl+Freq+Time+ECG 4.12±1.4 0.68 4.75±1.66 0.5

HRa 6.31±1.72 0.44 5.94±1.76 0.35

Selected 25 Featuresb 3.76±1.15 0.77 4.28±1.44 0.63

aA simple linear regression model was used for HR only. For other feature sets,
XGBoost regression model was used to generate the reported results.
bSelected using SFS method

performed Wilcoxon signed rank tests on the different feature
sets to investigate the significance of their differing accuracy
values. All the feature sets described in this table included an
AP signal feature (except HR-based linear regression model)
in addition to the features explicitly stated.

As shown in table II, of the single SCG feature sets,
frequency domain features achieved the lowest RMSE and
highest R2 for the treadmill protocol. Amplitude features were
slightly worse (p>.05) and time domain features performed the
poorest (p<.05 compared to both frequency and amplitude).
For the outdoor protocol, frequency features achieved the best
R2 and had an RMSE only slightly above (p>.05) that of
amplitude features (with a narrower confidence interval). Time
domain features once again performed the worst, though not
significant (p>.05). From these results it appears that fre-
quency domain features provided the most salient information
for estimating VO2 from SCG in both settings.

Better performance of frequency domain features in the
estimation of VO2 is understandable as exercise leads to
substantial changes in the shape and timing of waveforms.
For example, the shortening of isovolumetric contraction time
associated with increased sympathetic tone compresses the
SCG waveform in time and thus increases high frequency
components [29]. VO2 relates to Stroke Volume [49] which
has been shown to have a relation with the amplitude features
of the SCG signal [25]. This result is consistent with [28],
[50], where researchers have used frequency domain features
of the SCG signal to assess clinical state for patients with HF.
When comparing frequency and amplitude features, frequency
features performed slightly (p>0.05) better. Our results show
that exercise induced changes of VO2 not only change the
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Fig. 3. (a) Illustration of wearable signals (ECG, SCG and AP) with corresponding VO2 from COSMED K5 system at different exercise intensity level for
both (left) treadmill exercise and (right) outside walking exercise. (b) Ensemble averaged heartbeats of SCGDV signal at different exercise intensity levels
during treadmill exercise. (c) Ensemble averaged heartbeats of SCGDV signal at different exercise intensity levels during outside walking exercise.

amplitude of the SCG signals but also the signal power at
different frequency bands. Frequency domain features captured
these changes better than amplitude features.

ECG features alone performed worse than all three SCG
features alone in both protocols (p<0.05 compared to all three
feature sets of SCG for the treadmill protocol and p<0.05
compared to amplitude and frequency feature sets of SCG
for the outside walking protocol), using XGBoost regression
algorithm. As other studies have demonstrated high linear
correlations between HR and VO2 [19], [44]–[46], the com-
paratively poor performance of ECG features (instantaneous
HR and R-to-R interval) in our approach is likely attributable
to the overly-complex nature of an XGBoost regression model
and/or the addition of the R-to-R interval feature. To compare
our results with the common HR-based approach, we also fit
a simple linear regression model with HR only to estimate
instantaneous VO2 using the same LOSO cross-validation
approach, which achieved an RMSE of 6.31±1.72 and R2 of
0.44 for the treadmill protocol and an RMSE of 5.94±1.76 and
R2 of 0.35 for the outside walking protocol. Still these results
are significantly poorer (p<0.05) compared to the amplitude
and frequency domain features of SCG. Separate from the
HR-based simple linear regression model with LOSO cross-
validation, we also performed a simple correlation analysis
between instantaneous HR and VO2 across all subjects, which
resulted in an overall R2 of 0.49 and 0.42 for treadmill and

outside walking protocol respectively. A similar analysis on
each subject individually resulted in a higher R2 of 0.73±0.11
and 0.71±0.16 for treadmill and outside walking protocol
respectively. The lower value of the global R2 compared to
the subject-wise R2 is in agreement with existing literature
[45], [46]. For this reason, researchers often use %VO2-
max and %HR-max when attempting to show population-level
relationships between VO2 and HR rather than their raw values
directly [45], [46], [51]–[53]. Overall, these results show
the benefit of incorporating cardio-mechanical information
from SCG into a complex machine learning algorithm for
the development of a global regression model to estimate
instantaneous VO2 compared to simple linear models involving
only HR-based information.

When combining different feature sets of SCG with ECG
in XGBoost regressors, we achieved our best results (i.e.
lowest RMSE and highest R2) on the treadmill protocol
using amplitude and frequency features of SCG (RMSE of
3.78±0.98 ml/kg/min and R2 of 0.78), which is significantly
lower (p<0.05) than amplitude features alone. Still the lowest
RMSE for the treadmill protocol was obtained using frequency
domain features alone (RMSE of 3.68±0.98 ml/kg/min with
frequency domain features alone vs. 3.78±0.98 with amplitude
and frequency domain features together, p>0.05). For the
outdoor protocol, we obtained our best results using frequency
features of SCG and ECG features (RMSE of 4.30±1.47
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Fig. 4. (a) Correlation analysis for VO2 predicted vs VO2 actual (b) Bland-Altman analysis for VO2 predicted and VO2 actual for treadmill exercise. (c)
Correlation analysis for VO2 predicted vs VO2 actual (d) Bland-Altman analysis for VO2 predicted and VO2 actual for outside walking exercise. In the
Bland-Altman plots, the solid black line indicates the mean while the blue dashed lines indicate mean ± 1.96 x standard deviation.

ml/kg/min and R2 of 0.64). These results were significantly
better (p<0.05) than those from frequency, amplitude, time
and ECG features alone. Best results in RMSE and R2 values
for each protocol are shown in bold in Table II. Fig. 4 provides
a correlation analysis and Bland-Altman analysis of actual
VO2 values and estimated VO2 values, using the feature set
with the lowest RMSE for each protocol. It is apparent that
regression models can generally estimate instantaneous VO2
well on a heartbeat by heartbeat basis.

Fig. 5 shows examples of best and worst estimations of VO2
compared to actual VO2 for both protocols. The same model
used in Fig. 4 generated the VO2 estimations here. Even when
achieving the worst results in both protocols as shown in Fig.
5 (b) and (d), the algorithm still tracks relative changes well
despite overestimating overall VO2 values. Hence, we see a
consistent offset between actual and predicted values in both
cases.

From Table II in the case of the treadmill protocol, adding
ECG features independently to both the amplitude feature set
and the frequency feature set increased the error in both cases.
This is as expected because performance of ECG features was
the worst among all the feature sets for the treadmill protocol.
For the outside walking protocol, adding ECG features reduced
the RMSE for these same two feature sets (p<0.05). For
better VO2 estimation, the selection of feature sets for a
global model should incorporate domain knowledge of cardio-
electromechanical responses to ranges of exercise and activity.

Overall from Table II, the estimation results were better
for the treadmill protocol than for the outside walking pro-

tocol. This is expected as the treadmill protocol took place
indoors with standardized speeds and conditions whereas the
outside walking protocol was completed at the subject’s pace
with variable atmospheric conditions depending on the day.
Future studies should examine wider varieties of exercise
with subjects of broader age range and health status to apply
this methodology in estimating instantaneous VO2 throughout
daily activities.
B. Quantification of Additional Benefit from AP Signal

To assess the addition of environmental features in esti-
mating VO2, we compared results from the best performing
feature set for both protocols with and without features from
the AP signal. We conducted statistical analysis using a
Wilcoxon signed rank test on the paired RMSE values with and
without features from AP signal. For the treadmill protocol,
there were no significant changes (p>0.05) in RMSE from
adding features from AP signal. In the case of the outside
protocol, adding features from the AP signal significantly
reduced (p<0.05) the RMSE from 4.72±1.59 to 4.30±1.40
ml/kg/min. This result is as expected from Fig. 3(a), where
it can be clearly seen that the AP signal captures valuable
information regarding altitude during the outside walk. This
result is consistent with the work of Lester et al. [21] when
they showed that incorporating grade from barometric pressure
and/or GPS improved their accuracy in estimating caloric
expenditure in outside settings. Thus, the combination of
cardiac electro-mechanical parameters and environmental (AP)
context, presented for the first time in this paper, outperforms
physiological measurements alone in estimating VO2.
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Fig. 5. Example of subject-wise VO2 prediction for both exercise tasks: (a) Best case scenario and (b) worst case scenario for treadmill exercise. (c) Best
case scenario and (d) worst case scenario for outside walking exercise.

C. Regression with Feature Selection
The list of the selected features using the SFS algorithm is

provided in the appendix section. Of the 25 selected features
for treadmill protocol, one feature was ECG, 11 were SCG
amplitude, 6 were SCG frequency, and 7 were SCG time-
domain features (10 were from SCGHtoF, 4 were from SCGLat,
one was from SCGDV, and 9 were from SCGMag). In the case
of the outside walking protocol, one feature was ECG, one
was AP, 8 were SCG amplitude, 10 were SCG frequency,
and 5 were SCG time-domain features (10 features were from
SCGHtoF, 4 were from SCGLat, 4 were from SCGDV, and 5
were from SCGMag). Comparatively higher number of SCGHtoF
features in the selected features are in accordance with our
previous experience in PEP estimation from the SCG features
[33], [54].

The regression models with the top 25 features achieved
an RMSE of 3.76±1.15 ml/kg/min and R2 of 0.77 for the
treadmill exercise and an RMSE of 4.28±1.44 ml/kg/min and
R2 of 0.63 for the outside walking exercise. These results are
very similar (p>0.05) with the ones we obtained using the
best-performing feature sets for the two protocols respectively.
Overall, these results show the importance of different ampli-
tude, frequency, and time-domain features of SCG as well as
the importance of features from different SCG axes over the
typical use of features from SCGDV only. Future work should
verify these initial findings from this pilot study in a larger,
more diverse population.
D. Cross-Evaluation of Regression Models

The model trained on all the data from the treadmill protocol
and tested on the data from the outside protocol resulted in
an RMSE of 5.8±1.62 and R2 of 0.49, whereas, the model
trained on all the data from the outside walking protocol and
tested on the data from the treadmill protocol resulted in an
RMSE of 5.26±1.92 and R2 of 0.66. The higher accuracy
with the model trained using data from the outside walking
protocol compared to the model trained using the data from
the treadmill protocol is expected, as the outside protocol
includes a variety of activities (rest, uphill/downhill walk-
ing, stairs and recovery) whereas the treadmill protocol only
covers incremental exercise. The model trained on treadmill
data was not exposed to the variety of activities and their
corresponding physiological changes (which resulted in the

changes in SCG and ECG signals) that it encountered during
testing on the outside walking protocol and thus could not
estimate instantaneous VO2 as well in these unseen conditions.
This cross-evaluation was performed using the combination
of frequency features of SCG and ECG. Overall, this cross-
evaluation showcases the generalizability of our approach and
demonstrates the necessity of training models on data collected
in uncontrolled settings to estimate instantaneous VO2 in
daily life environments. These results suggest that training
models on data from uncontrolled settings has the potential
to additionally improve performance for specific exercise
applications, yet data from controlled laboratory environments
do not suffice for deploying the system ubiquitously.
E. Comparison with Similar Studies

Our MPE when estimating VO2 over one minute intervals
was 15.8% for the treadmill protocol and 20.5% for the outside
protocol. Compared to results from Shcherbina et al. [10] on
commercial devices in controlled laboratory settings, these
results are good (MPE of 15.8% in our case compared to
MPE of 27.4% in [10]). Similarly, if converted to percentage
accuracy (100%-MPE), they are comparable with the work of
Lester et al. [21] for both protocols (our work: 84.2% and
79.5% for controlled and uncontrolled settings respectively,
Lester et al.: 89.52% and 79.8% respectively). However, it is
important to note that these studies and ours all differ in their
activity protocols, subject populations, and output granularities
(instantaneous readings vs averages over intervals, output for
entire protocols vs only select segments etc.) and are thus
not directly comparable. In our case, we have used the data
from the whole protocol and estimated instantaneous VO2 for
the full duration. We report our error for both instantaneous
estimation as well as over one minute intervals. As mentioned
earlier, our study involves a population of 17 relatively ho-
mogeneous subjects for the treadmill protocol and 15 for the
outdoor protocol.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have estimated instantaneous VO2 during
controlled treadmill and uncontrolled outside walking exercise
using features from SCG, ECG and AP signals captured with
a wearable patch placed on a subject’s mid-sternum. We have
developed a global regression model for VO2 estimation using
state-of-the-art machine learning algorithms validated with
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leave-one-subject-out cross-validation. We have demonstrated
that adding cardio-mechanical and environmental sensing
modalities to traditional HR-based models improves estimation
accuracy significantly. Regarding SCG features, frequency
domain features provided the most valuable information for
VO2 estimation. Overall, this work demonstrates the capability
of an unobtrusive wearable patch to track VO2 and EE
continuously in daily life and exercise activities. Success in
this regard represents a considerable step towards the vision of
personalized, ubiquitous monitoring of fitness levels, weight-
loss programs, and lifestyle habits in healthy individuals. It
additionally suggests potential applications to the tracking
of disease progression and recovery progress for clinical
purposes. The low-cost nature of our system could make these
benefits accessible to the full general public.

As we collected data from healthy young subjects only,
future studies should increase the number of subjects and
broaden diversity in age and exercise ability. Additionally, we
collected data during treadmill and outside walking exercise
only for this proof of concept study. Future work should
investigate the use of the sensing system and VO2 estimation
algorithm for different and more complex daily life activities,
which will potentially enable the use of the device in ubiqui-
tous monitoring of EE. We extracted generic time, frequency
and amplitude features of the SCG signals, and have not
considered how the features can be affected by motion and
exercise intensities. Future work should investigate the effect
of the number of steps, step length, stride time, and velocity
on the SCG signals, and corresponding features. We removed
portions of the signals corrupted with motion artifact with an
outlier detection algorithm. Future studies should approach the
reduction of motion artifact from both a hardware and signal
processing perspective to potentially improve estimation. Our
only environmental feature in this study was measurement
of pressure changes. Future studies should evaluate the po-
tential benefits of incorporating temperature, humidity and
other environmental features in the global model, as well as
instantaneous velocity and respiration-related features. We ex-
plored the relationship between SCG features and VO2. Future
studies should investigate the mechanisms that underlie these
relationships. Finally, this study demonstrated an approach
for measuring VO2 with a wearable device at sub-maximal
effort levels. Future studies should investigate how a similar
approach might function at all levels of exertion to potentially
enable estimation of VO2 max and CRF.

APPENDIX

A. Selected Wearable Features using SFS
For treadmill protocol: R-to-R interval, amplitude of first

peak, valley and absolute maxima (0-200 ms) of SCGHtoF,
amplitude of second maxima, second peak and first valley
(0-200 ms) of SCGMag, AUS (0-100 ms) of SCGDV, AUS
(0-100, 200-300, 300-400, 400-500 ms) of SCGMag, SCGLat
band Power (15-18 Hz), SCGHtoF band Power (12-15 Hz),
most prominent and second prominent frequency in PSD of
SCGHtoF, amplitude of second prominent frequency in PSD
of SCGHtoF and SCGMag, location of second minima and first
valley (0-200 ms) of SCGLat, width of first absolute maxima

(200-500 ms) of SCGLat, width of second minima, location and
width of second peak (0-200 ms) of SCGHtoF, and location of
first absolute maxima (0-200 ms) of SCGMag.

For outside walking protocol: R-to-R interval, delta pres-
sure, amplitude of first maxima, minima and absolute maxima
(200-500 ms) of SCGHtoF, amplitude of first maxima, absolute
first maxima, first peak (0-200 ms) of SCGMag, AUS (200-
300 ms) of SCGHtoF and SCGDV, SCGLat band power (12-
15 Hz), SCGHtoF band power (15-18, 18-21, 21-24, 27-30
Hz), SCGDV band power (21-24 Hz), SCGMag band power
(24-27 Hz), most prominent frequency in PSD of SCGHtoF,
amplitude of second prominent frequency in PSD of SCGLat
and SCGDV, location of first maxima and width of second
minima (0-200 ms) of SCGLat, width of first maxima (200-500
ms) of SCGHtoF, number of valleys (0-200 ms) of SCGDV, and
location of first minima 200-500 ms of SCGMag.
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